
Access to Information and Optical Charac-
ter Recognition (OCR):
A Step-by-Step Guide to Tesseract
Part one of the CAIJ Computer Literacy Series

Alex Luscombe, Kevin Dick, Jamie Duncan, & Kevin Walby

June 3, 2020

Access to Information and Optical
Character Recognition (OCR):

A Step-by-Step Guide to Tesseract

Recommended citation: Luscombe, Alex, Kevin Dick, Jamie Duncan, and Kevin Walby. 2020. Access to Infor-
mation and Optical Character Recognition (OCR): A Step-by-Step Guide to Tesseract. Winnipeg, MB: Centre
for Access to Information and Justice.

Report design: Alex Luscombe.

Cover photo: ©Michael Dziedzic/Unsplash.

Please direct inquiries to:
Centre for Access to Information and Justice
University of Winnipeg
Department of Criminal Justice
Centennial Hall, 3rd Floor
515 Portage Avenue
Winnipeg, Manitoba
Canada R3B 2E9

www.uwinnipeg.ca/caij

Contents
About the Authors . 2

About the CAIJ . 3

Executive Summary . 4

Introduction . 5

Making Computational Social Science Accessible . 5

The Pros and Cons of Tesseract OCR . 6

Tutorial (MacOS/Linux only) . 7

Moving Ahead . 12

Appendix . 15

About the Authors
Alex Luscombe is a PhD student at the University of Toronto’s Centre for Criminology, a Junior Fellow at
Massey College, and a CAIJ Researcher.

Kevin Dick is a PhD candidate and Queen Elizabeth II Scholar at Carleton University’s Department of Sys-
tems and Computer Engineering and a CAIJ Researcher.

Jamie Duncan is an affiliate of the Ethics of AI Lab at the University of Toronto’s Centre for Ethics and a
CAIJ Researcher.

Kevin Walby is Associate Professor of Criminal Justice at the University of Winnipeg and the CAIJ Director.

The authors thank Marcus Sibley, Fernando Avila, and Andrea Sterling for their help in testing and improv-
ing the usability of the tutorial.

Access to Information and OCR 2

About the CAIJ
The Centre for Access to Information and Justice (CAIJ) at the University of Winnipeg aims to be a leading
international collaboratory for public interest research on matters of freedom of information (FOI) and
access to justice in Canada and beyond. Through local and international collaborative projects, the CAIJ
promotes a multi-disciplinary and critical approach to research and policy engagement. The CAIJ investi-
gates government practices, tracks general trends in FOI and access to justice, as well as charts national
and regional variations in these practices. The CAIJ advances theoretical, empirical, and policy-oriented
studies of FOI and access to justice in the form of workshops, reports, articles, and books produced by its
members.
The CAIJ’s mission and goals include:

• Advancing knowledge of FOI and access to justice practices through multi-disciplinary and critical
collaborative research projects;

• Organizing knowledgemobilization and research-drivenworking groups, workshops, seminars, train-
ing, and conferences on FOI and access to justice;

• Serving as a welcoming and enabling context for students and visiting scholars working in the areas
of FOI and access to justice in Canada and beyond;

• Engaging in outreach with a community and public interest focus.
For more information, please visit the Centre’s website.

Access to Information and OCR 3

https://www.uwinnipeg.ca/caij/new-centre-the-caij.html

Executive Summary
It is a perennial problem in Canada that municipal, provincial, and federal government agencies disclose
records under Access to Information (ATI) / Freedom of Information (FOI) law in non-machine readable
(image) format by default. The same problem regularly emerges in historical and archival research. The
inability to machine read these texts limits the analytic techniques that may be applied. It is also a barrier
to access. Fortunately, there exist a number of free and open-source solutions to this problem. In the
field of computer science, transforming scanned images into machine readable text is considered to be
a “solved” problem. One state-of-the-art solution is the Tesseract Optical Character Recognition (OCR)
engine, which is considered to be one of the best OCR engines available. This report will teach you how
to use Tesseract OCR, which is made easily accessible with some simple Python code. Our larger goal is to
improve access to open-source tools that can eliminate barriers to accessing information. The ability to
convert a document into a format that can be searched for keywords, phrases, and possibly studied using
natural language processing (NLP) or corpus linguistic methods alongside more traditional qualitative
ones promises to revolutionize social science research. We hope this tool will help ATI/FOI system users
as well as historians and archivists render their files more accessible. The discoverability of texts is a
crucial element of access to information.
Link to full tutorial: click here
Link to companion video: click here

Access to Information and OCR 4

https://github.com/CAIJ-UW/access-to-information-ocr
https://www.youtube.com/watch?v=qs2jO61_Vk8&feature=youtu.be

Introduction
It is a longstanding practice in Canada for municipal, provincial, and federal government agencies to dis-
close records under Access to Information (ATI) / Freedom of Information (FOI) law in non-machine read-
able (image) formats. Lengthy reports, emails, and excel files are oǒten printed and scanned by access
coordinators before they are released to the requester. Typically, if a user requests records in digital
form, they receive .pdfs of scanned record copies via email or on a data stick or CD ROM. Coordinators
may be willing to release the data in a “raw’’ format, however, this is not always the case, and inexperi-
enced requesters may not even realize that this is something they can ask for (indeed, they may not even
be aware that the files they have requested are coming in image format before it is too late).
The inability to search and analyze texts with a computer limits the analytic techniques that may be ap-
plied to them, presenting barriers to access. Access to Information Officers oǒten “over produce’’ when
processing requests by including mounds of irrelevant text as part of one’s disclosure package. Manually
siǒting through thousands of pages of image format documents disclosed under ATI/FOI in search of one
or two lines or key words becomes the equivalent of finding a needle in a haystack.
Fortunately, there are several free and open-source solutions to this problem. In the field of computer
science, transforming scanned images into machine readable text is widely considered to be a “solved’’
problem. One state-of-the-art solution is the Tesseract Optical Character Recognition (OCR) engine, con-
sidered to be one of the best OCR engines available.
This report will walk you through how to use Tesseract OCR, which we have made easily accessible with
some simple Python code. It is part of a larger series of projects we intend to launch to promote com-
puter literacy and the accessibility of computational tools and methods among non-computer scientists.
In doing so, we hope to improve access to open-source tools that can eliminate barriers to accessing
information. The ability to convert a .pdf document of any size into a format that can be searched for
keywords, phrases, and studied using natural language processing (NLP) or corpus linguistic methods
alongside more traditional qualitative ones promises to revolutionize social science research. Before the
tutorial, we discuss how this tool might help researchers and other ATI/FOI users integrate computational
methods into their work.

Making Computational Social Science Accessible
Following digital humanities scholars, social sciences researchers are increasingly adopting computational
methods to complement traditional disciplinary approaches. Computational methods have now been ap-
plied in disciplines from sociology, to criminology, political science, geography, media studies, and beyond
(van Atteveldt & Peng, 2018; Lucas et al., 2015; Torrens, 2010). Some entail searching for and analyzing big
data – a term simply defined as the processing of massive data sets (Kitchin & McArdle, 2016). More com-
plex definitions incorporate consideration of the extent to which data can be collected and processed
in real time (velocity), the incorporation of data that is “structured, semi-structured, and unstructured”
(variety), its capacity to “point to” or pair with other data (indexicality and relationality), and its ability
to describe holistic systemic processes with a high level of detail (exhaustivity and resolution) (Kitchin &
McArdle, 2016, 1).
Reflexively applying technology to improve access to previously inaccessible texts can open up social sci-
ence to new innovative, analytic techniques and approaches (Kitchin, 2017). Drawing from and contributing
to the field of computational social science, this report provides one such tool. Optical Character Recogni-
tion (OCR) is a technique for converting texts to a digital, machine-readable form. The typical assumption
among non-technical researchers is that only proprietary soǒtware tools for OCR are accessible to them.

Access to Information and OCR 5

We demonstrate how open-source OCR alternatives can be equally if not more effective (not to mention
free). In the context of ATI/FOI, computational methods can help researchers efficiently surface patterns
and relationships within large repositories of textual records of varied types, structures, and sources.
Corpus linguistics, which emerged in the late 1950s, is arguably the first form of computational text analysis
(McEnery & Hardie, 2013). At a high level, corpus analysis involves assembling a body (corpus) of machine-
readable text to answer a specific research question. The corpus is analyzed (and inmany cases annotated)
according to frequency (how common particular words or meanings are) and concordances (the context
in which specific words are used) (McEnery & Hardie, 2011). While these discussions are not entirely new
in the social sciences (Leetaru, 2012; Franzosi & Roberto, 2004), the technologies and techniques available
to researchers have become significantly more advanced in the past decade.
Lewis et al. (2013) argue in favour of blending computational and traditional social science methods de-
pending on the research question. Traditional analytic methods using ‘small data’ remain useful in the
big data world (Kitchin & Lauriault, 2015; Mason et al., 2014). As Jemielniak (2020) argues, researchers
collecting and analyzing big data should incorporate and describe nuanced contexts and relationships,
something that combining computational and qualitative methods can help with.
There is no standard approach to computational methods or automated text analysis, so one needs to
constantly validate and adapt their approach to coding (Grimmer & Stewart, 2013). Advanced computa-
tional methods have begun to allow researchers to go far beyond counting words and analyzing their
immediate surroundings in a text (Wiedemann, 2013, 343). For example, natural language processing (NLP)
techniques like Latent Dirichlet Allocation (LDA) Topic Modeling can classify and sort texts according to
abstract algorithmically generated topics (Jacobi et al., 2016). However, there remains much work to be
done. Longstanding epistemological issues such as criteria for research quality are as crucial as ever.
In order for the texts we obtain to be analyzed using computational methods, they need to be machine
readable. The means of achieving this is OCR. We designed this OCR tool and step-by-step tutorial with
two types of non-technical users in mind, although its utility is by no means limited to them. The first
group is users of ATI/FOI systems, which allow citizens by law to request documents and data held by
their governments (and in many cases foreign governments as well). In Canada, these records are oǒten
voluminous, and the records are usually not provided in machine readable formats compatible with com-
putational methods. Users of ATI/FOI systems oǒten lack these tools. The other group we envision finding
this guide useful are historians and archivists. While these users may already have digital tools available
to them, this typically comes in the form of costly, proprietary soǒtware.

The Pros and Cons of Tesseract OCR
Tesseract OCR is completely free. Proprietary OCR soǒtware by contrast can be quite expensive. There is
also no restriction to how many documents you can process using Tesseract OCR, whereas many propri-
etary tools will limit the number of pages you can process (oǒten until you pay more). Depending on the
soǒtware you purchase, it may also be less effective than Tesseract, which is recognized as one of the best
OCR engines available. Finally, by using an open source tool we generate transparent, reproducible code
that can be shared with others or adapted for future purposes.
Like many computational tools, Tesseract is highly effective but it is not perfect. ATI/FOI disclosures are
typically printed and scanned copies of records so depending on their quality, not all characters may
be properly recognized (though you may be surprised how effective it really is). Additionally, ATI/FOI
disclosures generally contain redactions in the form of white, grey, or black boxes covering undisclosed
information. Finally, complex character layouts (like in some tables) may not come out logically ordered
relative to the original record, a limitation of any OCR engine, not just Tesseract.

Access to Information and OCR 6

Figure 1: Original .pdf (leǒt) compared to .txt file output post OCR processing (right)

Depending on the quality, layout, and format of the ATI/FOI records, it is likely that some degree of docu-
ment “cleaning’’ will be required aǒter processing them. Cleaning can be effectively streamlined by follow-
ing what computer scientists call the “human-in-the-loop’’ paradigm, which we plan to cover in a future
tutorial.

Tutorial (MacOS/Linux only)
This tutorial will walk you through how to render your scanned, image-based documents .pdf documents
into a machine-readable, text-based format (figure 1). Throughout, we encourage you to follow along with
our (companion how-to video on YouTube). The tutorial is designed to build skills for the use of open-
source soǒtware to improve access to information generally. We cover the high-level steps required to
convert a large scanned .pdf format document into a machine-readable and searchable .txt format. We
recommend beginning by following the steps using the sample .pdf file provided in the “Sample-Files”
folder in the repository.

Step one: download the repository
Download the repository from the CAIJ GitHub page, unzip the folder, and save it locally on your computer’s
hard drive (figure 2).

Access to Information and OCR 7

https://www.youtube.com/watch?v=qs2jO61_Vk8&feature=youtu.be
https://github.com/CAIJ-UW/access-to-information-ocr

Figure 2: Screenshot of downloading the full repository from GitHub

Step two: open your computer’s command prompt
Open your computer’s command prompt. On MacOS, this is called the Terminal. To open the Terminal,
simply press Command + Space and type the word “Terminal” in the search bar. Double click the Terminal
application listed under Top Hit to open it.

Step three: install Homebrew
If you already have Homebrew installed on your computer, skip this step.
If you unsure if you have homebrew installed, type the following line into your computer’s Terminal:

brew help

If it returns “command not found’’, you do not have homebrew installed on your computer.
You can download Homebrew by entering the following command into your computer’s Terminal:

/bin/bash -c “$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install.sh)”

Step four: install Ghostscript using Homebrew
If you already have Ghostscript installed on your computer, skip this step.
If you unsure if you have Ghostscript installed, type the following line into your computer’s Terminal:

ghostscript help

Access to Information and OCR 8

Figure 3: Screenshot of how to obtain file pathname on MacOS

If it returns “command not found’’, you do not have Ghostscript installed on your computer.
You can download Ghostscript by entering the following command into your computer’s Terminal:

brew install ghostscript

Step five: install Tesseract using Homebrew
If you already have Tesseract installed on your computer, skip this step.
If you unsure about whether you have Tesseract installed, type the following line into your computer’s
Terminal:

tesseract help

If it returns “command not found’’, you do not have Tesseract installed on your computer.
You can download Tesseract by entering the following command into your computer’s Terminal:

brew install tesseract

Access to Information and OCR 9

Step six: copy the pathname of the folder you downloaded, unzipped,
and saved in step one
We need to obtain the full directory pathname to the folder that you downloaded, unzipped, and saved in
step one. This is a copy of the repository and contains the sample file and Python script we will need to
run the Tesseract OCR engine. To obtain the exact pathname to this folder, simply open the folder on your
computer, click the gear icon at the top of the window, and select the “copy as Pathname” option from the
list (figure 3). This will copy the full pathname to your clipboard.

Step seven: change your working directory in the Terminal
We will now change our working directory using the pathname you just copied to your clipboard. To do
this, return to the Terminal and type “cd” followed by the pathname we just copied (you can paste it with
command + V). The end result will look something like this (think of this as the basic formula):

cd path/name

So, if your name is Jane Doe, and you saved the folder on your desktop, it should look something like this:

cd /users/janedoe/desktop/access-to-information-ocr-master

To double check that you are in the correct directory, you can enter the following command into your
Terminal, which will tell you the name of your current directory and display the name of the files contained
in it:

ls

If you are in the correct directory, the “ls” command should show the name of all of the files stored in the
master folder, including the most important ones, ORC-converter.py and requirements.txt. If this is not
the case, you may need to ensure the “cd” command worked properly, or return to step six.

Step eight: create an output folder
To process our sample ATI/FOI disclosure file to make it machine readable, we are going to first parse
the file into individual pages, run each of these through the Tesseract OCR engine, and finally recompile
the .txt files generated from each page into a single .txt file that we can then clean, search, and analyze.
Throughout these processing stages, a lot individual .png and .txt files are going to be generated, and
these need to be stored somewhere.
Inside the access-to-information-ocr-master folder, our working directory, create a new folder. You can
call this folder whatever you’d like. If you are using one of the sample data files in the Sample-Files folder,
you might name the folder aǒter the sample record you are processing by calling it “A-2017-00078”.
The structure of the command is (again, think of this as the formula):

mkdir subfolder-name

So, if you are going to call this folder “A-2017-00078”, you would enter the following into your computer’s
Terminal:

mkdir A-2017-00078

Access to Information and OCR 10

To verify that this worked, enter the “ls” command that we learned earlier into the Terminal:

ls

You should now see the name of your new subfolder listed with the other files in your working directory.

Step nine: ensure you have Python 3 installed on your computer
Python is available on all MacOS computers by default, but depending on the age of your computer, you
may need to update it to version 3. To do this, use homebrew to install python3 by entering the follow
into your Terminal:

brew install python3

Step ten: load in the requirements.txt file
Before we can run our python script, we need to install two key Python libraries. To do this, enter the
following into the Terminal:

pip3 install -r requirements.txt

Step eleven: run the script
We are now ready to process our file! This stage can take several minutes (or hours) depending on the
size of the file. Processing will happen in three stages. First, the PDF will be parsed into individual page
elements (using Ghostscript). Second, each page will be processed into a machine readable .txt file with
Tesseract. Third, each page (the .txt files) will be recompiled into a single .txt file named aǒter the PDF.
To do this, we will run a simple Python script (in your working directory, this is the OCR-converter.py file).
Same as the previous steps, we will run this script in the Terminal.
To run the Python script, all we need to do is obtain the correct pathname for our input file (if you are
following along with the example, one of the sample ATI/FOI disclosure files) and the correct pathname
for our output file (the folder we created in step eight) and we are ready to go.
The basic command formula is:

python3 OCR-converter.py -i input/file/pathname -o output/folder/pathname

So, let’s say we are going to run the script on the A-2017-00078.pdf file in the Sample-Files subfolder, and
we are going to store the results in the subfolder we created in step eight called A-2017-00078. The result
would look like this:

python3 OCR-converter.py -i Sample-Files/A-2017-00078.pdf -o A-2017-00078

Enter this into your Terminal, sit back, and relax (but don’t change anything in the master folder until the
code is completely finished running!). The end result will be a single .txt file in the output subfolder you
created by the same name as the PDF file you processed (e.g., A-2017-00078.txt).

Access to Information and OCR 11

Moving Ahead
When reflecting on the state of his discipline, Immanuel Wallerstein (2001) oǒten suggested it was neces-
sary for sociology to move beyond 19th century paradigms of thought. Wallerstein (1996) also regularly
argued it was necessary for contemporary sociologists to understand multiple languages, as failure to do
so would result in an inability to comprehend our complex world-system. We would suggest that engag-
ing with computational social science begins to achieve both of these goals. Engaging with computational
social science forces scholars to think differently about data. It is not hyperbolic to suggest that the emer-
gence of “big” and new digital forms of data are ushering in the greatest shiǒt in social science since the
emergence of the survey (Kent, 1985). Engaging with computational social science also forces scholars to
learn what is literally a new language, the language of code.
At the very least, we hope that the tool and step-by-step tutorial we have provided here will help users
of ATI/FOI law as well as historians and archivists render big files more searchable, processable, and
analyzable. The discoverability of texts (Yarkoni et al., 2019) is a crucial element of access to information.
More broadly, we hope this report and our tool will help entice social scientists in Canada and beyond
to dip their toes into the computational social science pool. It is fun, it is generally free (assuming one
has access to a computer and the Internet, of course, which we acknowledge not everyone does), it is
interesting, and it is extremely useful.

Access to Information and OCR 12

References
Franzosi, R., & Roberto, F. (2004). From words to numbers: Narrative, data, and social science (Vol. 22).
Cambridge University Press. Retrieved from http://services.cambridge.org/us/academic/subjects/
sociology/sociology-general-interest/words-numbers-narrative-data-and-social-science?format=PB

Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content
analysis methods for political texts. Political Analysis, 21(3), 267–297. Retrieved from https://
www.cambridge.org/core/journals/political-analysis/article/text-as-data-the-promise-and-pitfalls
-of-automatic-content-analysis-methods-for-political-texts/F7AAC8B2909441603FEB25C156448F20

Jacobi, C., Van Atteveldt, W., &Welbers, K. (2016). Quantitative analysis of large amounts of journalistic texts
using topic modelling. Digital Journalism, 4(1), 89–106. Retrieved from https://www.tandfonline.com/
doi/abs/10.1080/21670811.2015.1093271

Jemielniak, D. (2020). Thick big data: Doing digital social sciences. Oxford University Press. Retrieved
from https://global.oup.com/academic/product/thick-big-data-9780198839705?cc=us&lang=en&

Kent, R. (1985). The emergence of the sociological survey, 1887-1939. In M. Bulmer (Ed.),
Essays on the History of British Sociological Research (p. 52-69). Cambridge University Press.
Retrieved from https://www.cambridge.org/core/books/essays-on-the-history-of-british-sociological
-research/720B29760F67BAB665E8AF6FDC3393BF

Kitchin, R. (2017). Thinking critically about and researching algorithms. Information, Communication
& Society, 20(1), 14–29. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/1369118X.2016
.1154087

Kitchin, R., & Lauriault, T. P. (2015). Small data in the era of big data. GeoJournal, 80(4), 463–475. Retrieved
from https://link.springer.com/article/10.1007/s10708-014-9601-7

Kitchin, R., & McArdle, G. (2016). What makes big data, big data? Exploring the ontological characteristics of
26 datasets. Big Data & Society, 3(1), 2053951716631130. Retrieved from https://journals.sagepub.com/
doi/10.1177/2053951716631130

Leetaru, K. (2012). Data mining methods for the content analyst: An introduction to the computational
analysis of content. Routledge. Retrieved from https://www.routledge.com/Data-Mining-Methods-for
-the-Content-Analyst-An-Introduction-to-the-Computational/Leetaru/p/book/9780415895149

Lewis, S. C., Zamith, R., & Hermida, A. (2013). Content analysis in an era of big data: A hybrid approach to
computational and manual methods. Journal of Broadcasting & Electronic Media, 57(1), 34–52. Retrieved
from https://www.tandfonline.com/doi/abs/10.1080/08838151.2012.761702

Lucas, C., Nielsen, R. A., Roberts, M. E., Stewart, B. M., Storer, A., & Tingley, D. (2015).
Computer-assisted text analysis for comparative politics. Political Analysis, 23(2), 254–277. Re-
trieved from https://www.cambridge.org/core/journals/political-analysis/article/computerassisted
-text-analysis-for-comparative-politics/CC8B2CF63A8CC36FE00A13F9839F92BB

Mason, W., Vaughan, J. W., & Wallach, H. (2014). Computational social science and social computing. Ma-
chine Learning, 95, 257-260. Retrieved from https://link.springer.com/article/10.1007/s10994-013-5426
-8

McEnery, T., & Hardie, A. (2011). Corpus linguistics: Method, theory and practice. Cambridge University
Press. Retrieved from https://www.cambridge.org/ca/academic/subjects/languages-linguistics/
applied-linguistics-and-second-language-acquisition/corpus-linguistics-method-theory-and-practice
?format=PB&isbn=9780521547369

Access to Information and OCR 13

http://services.cambridge.org/us/academic/subjects/sociology/sociology-general-interest/words-numbers-narrative-data-and-social-science?format=PB
http://services.cambridge.org/us/academic/subjects/sociology/sociology-general-interest/words-numbers-narrative-data-and-social-science?format=PB
https://www.cambridge.org/core/journals/political-analysis/article/text-as-data-the-promise-and-pitfalls-of-automatic-content-analysis-methods-for-political-texts/F7AAC8B2909441603FEB25C156448F20
https://www.cambridge.org/core/journals/political-analysis/article/text-as-data-the-promise-and-pitfalls-of-automatic-content-analysis-methods-for-political-texts/F7AAC8B2909441603FEB25C156448F20
https://www.cambridge.org/core/journals/political-analysis/article/text-as-data-the-promise-and-pitfalls-of-automatic-content-analysis-methods-for-political-texts/F7AAC8B2909441603FEB25C156448F20
https://www.tandfonline.com/doi/abs/10.1080/21670811.2015.1093271
https://www.tandfonline.com/doi/abs/10.1080/21670811.2015.1093271
https://global.oup.com/academic/product/thick-big-data-9780198839705?cc=us&lang=en&
https://www.cambridge.org/core/books/essays-on-the-history-of-british-sociological-research/720B29760F67BAB665E8AF6FDC3393BF
https://www.cambridge.org/core/books/essays-on-the-history-of-british-sociological-research/720B29760F67BAB665E8AF6FDC3393BF
https://www.tandfonline.com/doi/abs/10.1080/1369118X.2016.1154087
https://www.tandfonline.com/doi/abs/10.1080/1369118X.2016.1154087
https://link.springer.com/article/10.1007/s10708-014-9601-7
https://journals.sagepub.com/doi/10.1177/2053951716631130
https://journals.sagepub.com/doi/10.1177/2053951716631130
https://www.routledge.com/Data-Mining-Methods-for-the-Content-Analyst-An-Introduction-to-the-Computational/Leetaru/p/book/9780415895149
https://www.routledge.com/Data-Mining-Methods-for-the-Content-Analyst-An-Introduction-to-the-Computational/Leetaru/p/book/9780415895149
https://www.tandfonline.com/doi/abs/10.1080/08838151.2012.761702
https://www.cambridge.org/core/journals/political-analysis/article/computerassisted-text-analysis-for-comparative-politics/CC8B2CF63A8CC36FE00A13F9839F92BB
https://www.cambridge.org/core/journals/political-analysis/article/computerassisted-text-analysis-for-comparative-politics/CC8B2CF63A8CC36FE00A13F9839F92BB
https://link.springer.com/article/10.1007/s10994-013-5426-8
https://link.springer.com/article/10.1007/s10994-013-5426-8
https://www.cambridge.org/ca/academic/subjects/languages-linguistics/applied-linguistics-and-second-language-acquisition/corpus-linguistics-method-theory-and-practice?format=PB&isbn=9780521547369
https://www.cambridge.org/ca/academic/subjects/languages-linguistics/applied-linguistics-and-second-language-acquisition/corpus-linguistics-method-theory-and-practice?format=PB&isbn=9780521547369
https://www.cambridge.org/ca/academic/subjects/languages-linguistics/applied-linguistics-and-second-language-acquisition/corpus-linguistics-method-theory-and-practice?format=PB&isbn=9780521547369

McEnery, T., & Hardie, A. (2013). The history of corpus linguistics. In K. Allan (Ed.), The
Oxford Handbook of the History of Linguistics (pp. 727–745). Oxford University Press Oxford.
Retrieved from https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199585847.001.0001/
oxfordhb-9780199585847-e-34

Torrens, P. M. (2010). Geography and computational social science. GeoJournal, 75(2), 133–148. Retrieved
from https://link.springer.com/article/10.1007/s10708-010-9361-y

van Atteveldt, W., & Peng, T.-Q. (2018). When communication meets computation: Opportunities, chal-
lenges, and pitfalls in computational communication science. Communication Methods and Measures,
12(2-3), 81–92. Retrieved from https://www.tandfonline.com/doi/full/10.1080/19312458.2018.1458084

Wallerstein, I. M. (1996). Open the social sciences: Report of the Gulbenkian Commission on the restructur-
ing of the social sciences. Stanford University Press. Retrieved from https://www.sup.org/books/title/
?id=792

Wallerstein, I. M. (2001). Unthinking social science: The limits of nineteenth-century paradigms. Temple
University Press. Retrieved from http://tupress.temple.edu/book/3582

Wiedemann, G. (2013). Opening up to big data: Computer-assisted analysis of textual data in so-
cial sciences. Historical Social Research/Historische Sozialforschung, 332–357. Retrieved from http://
www.qualitative-research.net/index.php/fqs/article/view/1949

Yarkoni, T., Eckles, D., Heathers, J., Levenstein, M., Smaldino, P., & Lane, J. I. (2019). Enhancing and ac-
celerating social science via automation: Challenges and opportunities. Retrieved from https://osf.io/
preprints/socarxiv/vncwe/

Access to Information and OCR 14

https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199585847.001.0001/oxfordhb-9780199585847-e-34
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199585847.001.0001/oxfordhb-9780199585847-e-34
https://link.springer.com/article/10.1007/s10708-010-9361-y
https://www.tandfonline.com/doi/full/10.1080/19312458.2018.1458084
https://www.sup.org/books/title/?id=792
https://www.sup.org/books/title/?id=792
http://tupress.temple.edu/book/3582
http://www.qualitative-research.net/index.php/fqs/article/view/1949
http://www.qualitative-research.net/index.php/fqs/article/view/1949
https://osf.io/preprints/socarxiv/vncwe/
https://osf.io/preprints/socarxiv/vncwe/

Appendix
Full python script (available in the GitHub repository as OCR-Converter.py):

""" OCR-converter.py
Author: Kevin Dick
Date: 2020-05-18

Description: Optical Character Recognition (OCR) script
that takes in a scanned PDF document, splits it into individual
PNG pages, applies the Tesseract OCR to each, and compiles together
the result in a machine-readable and searchable text-document.
"""
import os, sys
import locale
import ghostscript
import argparse

parser = argparse.ArgumentParser(description='')
parser.add_argument('-i', '--input_pdf', required=True,

help='path to the scanned PDF document')
parser.add_argument('-o', '--output_dir', required=True,

help='the directory where the output will be saved')
parser.add_argument('-v', '--verbose', action='store_true',

help='increase verbosity')
args = parser.parse_args()

EXAMPLE: python3 OCR-converter.py -i /path/to/the/scanned/pdf-file.pdf -o /path/to/the/
directory/where/files/will/be/saved/ -v

Subdirectories for the individual pages
PAGE_IMG = 'page-img'
PAGE_TXT = 'page-txt'

def check_paths():
""" check_paths

This function will verify that the PDF exists and that the output paths are
correctly formatted.

If the sub-directories for the pages are not present, they will be made.
Input: None
Output: <str, None>, error message if input file or output dir don't exist.

None, if everything ok.
"""
if args.verbose: print('Checking validity of input and creating subdirectories..')
if not os.path.exists(args.input_pdf): return f"Error: File {args.input_pdf} doesn'

t exist."
if not os.path.exists(args.output_dir): return f"Error: Directory {args.output_dir}

 doesn't exist."

If the page image directory exists, remove everything inside & remake it

Access to Information and OCR 15

if os.path.exists(os.path.join(args.output_dir, PAGE_IMG)): os.system(f'rm -rf {os.
path.join(args.output_dir, PAGE_IMG)}')

os.mkdir(os.path.join(args.output_dir, PAGE_IMG))

If the page text directory exists, remove everything inside and remake it
if os.path.exists(os.path.join(args.output_dir, PAGE_TXT)): os.system(f'rm -rf {os.

path.join(args.output_dir, PAGE_TXT)}')
os.mkdir(os.path.join(args.output_dir, PAGE_TXT))

def main():
""" main function """
Step 0: We must ensure that the PDF and directory specified exist and the

subdirectories for individual pages exist.
We make the subirectories if they dont already exist.
setup = check_paths()
if setup != None:

If we get an error message, we print it and exit
print(setup)
sys.exit(0)

These are the two locations where individual files will be saved as well as where
the output txt will be saved

png_dir = os.path.join(os.path.abspath(args.output_dir), PAGE_IMG)
txt_dir = os.path.join(os.path.abspath(args.output_dir), PAGE_TXT)
output_txt = os.path.join(os.path.abspath(args.output_dir), os.path.basename(args.

input_pdf).replace('.pdf', '.txt'))

Step 1: First the PDF is split into individual pages, with one PNG image
representing each page of the scanned PDF.

This is achieved using Ghostscript, a suite of software capable of manipulateing
and transforming the contents

of PDFs. We move to the directory where Ghostscript will output the individual
pages as PNG files: png_dir.

We then run the following command:
gs_args = [arg.encode(locale.getpreferredencoding()) for arg in ['',

'-dBATCH',
'-dNOPAUSE',
'-sDEVICE=png16m',
'-r256',
'-sOutputFile=page%d.png',
'-f', os.path.abspath(args.

input_pdf)]]
Equivalent to this command: gs -dBATCH -dNOPAUSE -sDEVICE=png16m -r256 -

sOutputFile=page%d.png {os.path.abspath(args.input_pdf)}
os.chdir(png_dir)
ghostscript.Ghostscript(*gs_args)
#if args.verbose: print(cmd)
#os.system(cmd)

Step 2: Secondly, we run the Tesseract OCR on each PNG image and it produces the

Access to Information and OCR 16

detected text-based output for each image.
Since we are currently in the PNG subdirectory, we will run over all files in

this directory and save them to the
txt_dir.
for page_png in os.listdir(png_dir): # extract all of the filenames in this

directory (e.g. "page001.png")
if 'page' not in page_png: continue # skip any files that don't have 'page'

in the name (e.g. .DS_Store)
page_txt = page_png.replace('.png', '') # convert the .png to .txt for the

output file (the .txt gets added)
cmd = f'tesseract {page_png} {os.path.join(txt_dir, page_txt)}'
if args.verbose: print(cmd)
os.system(cmd)

Step 3: Finally, we iterate over all txt files in sorted order to compile them
into a final document of all pages.

The output file name will be the same as the input file, only with .txt instead
of .pdf)

open(output_txt, 'w').write('') # Create an empty file to save txt data to
for page_txt in sorted(os.listdir(txt_dir)):

if 'page' not in page_txt: continue # skip any files that don't have 'page'
in the name (e.g. .DS_Store)

the 'cat' command prints out the contents of a file
the '>>' operator redirects the result of the 'cat' command to the END of

the file
together, this command simply adds the text of each page to the end of the

output txt file.
cmd = f'cat {os.path.join(txt_dir, page_txt)} >> {output_txt}'
if args.verbose: print(cmd)
os.system(cmd)

if __name__ == "__main__": main()

Access to Information and OCR 17

	About the Authors
	About the CAIJ
	Executive Summary
	Introduction
	Making Computational Social Science Accessible
	The Pros and Cons of Tesseract OCR
	Tutorial (MacOS/Linux only)
	Moving Ahead
	Appendix

